The Free Particle – Exploring

Introduction

Recall that the general eigenfunction for a quanta with no forces acting on it can be written:
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(Equation 1)

where A and B are arbitrary (complex) constants and the wave number, k, is:
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(Equation 2)

The wave number is related to the wavelength by the usual equation:
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(Equation 3)

You have shown that when dealing with electrons in units of nanometers, nm, and electron volts, eV, the equation for wavelength is approximately:


[image: image4.wmf]V

E

eV

nm

-

=

2

5

.

1

l








(Equation 4)

The wave function corresponding to the eigenfunction of equation 1 is:
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(Equation 5)

Recall also that since A and B are complex we can also write the eigenfunction as:
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(Equation 6)

with a corresponding wave function of:
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(Equation 7)

You probably know what a graph of equation 1 looks like, but graphs of equations 5, 6, and 7 might be a bit hard to imagine.  Those functions are time dependant and involve complex numbers.  The following activities will guide you in exploring the shapes and time behaviors of these “free particle” wave functions and eigenfunctions.  This exploration should help you begin to build a “quantum mechanics intuition”.  These activities will also introduce you to some important terminology.

Shape and Behavior

The program Wave Function Explorer (WFE) is a tool that will help you visualize and experiment with these and many other wave functions and eigenfunctions.

Activity 1:  Run WFE and select Explorer in the Mode menu.  The main part of the window is filled with three graphs.  The top graph is an energy diagram showing the total energy, E (in cyan) and the potential energy, V (in red).  The second graph shows the wave function, Ψ(x) .  Since the wave function is complex, there are two lines on this graph, the real and imaginary parts of the wave function:  ReΨ(x) (in magenta) and ImΨ(x) (in green).  The bottom graph shows the probability density Ψ* Ψ (in blue).  Press the run button and the time dependence of the wave function will be animated.  Immediately above the run button (which is now labeled "stop" and will stop the animation) is a text field showing the time (in femtoseconds, fs).  Press the stop button and draw a sketch of the wave function (real and imaginary parts) vs. x.  Try to make all of your sketches as accurate as possible for future reference.  You may want to use graph paper.  Next, press the run button and use words and/or pictures to describe how the wave function is changing in time.  Again, make this description as accurate as possible.

The wave function being plotted here is equation 5 (for electrons) with A=0 and B=1.  (Note:  When t=0 equation 5 becomes equation 1, e.g. when t=0 the graph of the wave function is the same as the graph of the eigenfunction.  This happens at other times also.)  Since the nodes and antinodes of this wave function do not move along the x-axis it is referred to as a standing wave.  (This is identical to the definition of a standing wave that you probably learned while studying mechanical waves.  However, this standing wave is a bit more complicated since it involves complex numbers.)  We will use this type of wave function when we study the bound states of electrons (and other quanta).

Activity 2:  Draw a sketch of the probability density and describe how it is changing in time.  Calculate the formula for the probability density, Ψ* Ψ, for this wave function (equation 5 with A=0 and B=1).  Use this formula to explain why the probability density behaves this way in time.

Since the probability density does not change in time, this type of wave function is called a stationary state.  All wave functions calculated using separation of variables will be stationary states - their probability densities will not be time dependant.  Notice that the definition of standing wave refers to the behavior of the wave function whereas the definition of stationary state refers to the behavior of the probability density.  This is a very important distinction since there is no way to physically “measure” a wave function – we can only really make measurements of the probability density.  This means that we can never directly “see” whether or not a wave function is a standing wave but we can “see” if it represents a stationary state.

You can view the wave functions of equation 5 with other (real) values of A and B by changing A and B in the text fields near the bottom left corner of your screen in WFE.  (Note: you can type in any value you want, or you can use the 
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 control to change the value.  Clicking on the right side of this control will increase the value, clicking on the left side will decrease the value.  Clicking nearer to the center will change the value by small amounts, clicking near the edges will change the value by a larger amount.  Clicking and holding will continuously change the value.)

Activity 3:  Use the 
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 control to look at the wave functions for several different values of A and B.  How does the wave function change as these two parameters change?  Use words and/or pictures for your answer – describing the changes as fully as possible.  Are all of the wave functions that you see standing waves?  Are all of them stationary states?  Why or why not?

WFE will not plot equation 5 with A and B complex - it will only plot it with A and B real since equation 5 with A and B complex is not a commonly used wave function.  Thus, all of the wave functions that you have seen so far are standing waves.  As you will see later, standing waves are most useful for studying bound states.  However, the classical solution to the problem of a constant potential involves a particle moving along at a constant speed.  Such motion does not seem to correspond well with these standing wave solutions.  It would be nice if the quantum wave functions had at least some sort of left to right motion.  This is where the wave function of equation 7 comes in.  Let's look at this wave function in WFE.

Activity 4:  In WFE set A=1 and B=0.  Just above A and B you will see a drop down menu box which indicates that the current eigenfunction being used is Asin(kx)+Bcos(kx).  Use this drop down menu to change the current eigenfunction to Cexp(ikx)+Dexp(-ikx) which is the eigenfunction equation 6.  (Although WFE shows the eigenfunction in this box it is still actually plotting the corresponding wave function.)  Notice that A and B become C and D automatically.  Now WFE is plotting the wave function of equation 7 with C=1 and D=0.  If the animation is stopped press the run button to see how this wave function behaves.  Then press the stop button and draw a sketch of the wave function (real and imaginary parts) vs. x.  Then press the run button and use words and/or pictures to describe how the wave function is changing in time.  How does this wave function differ from those you have seen so far?  Draw a sketch of the probability density.  (Note: the small wiggles of the graph are a numeric artifact, just ignore them.)  How is it changing in time?  How does it differ from those you have seen so far?  Is this wave function a standing wave?  Is it a stationary state?  Set C=0 and D=1.  How does this wave function and probability density differ from those above?
These wave functions are referred to as traveling waves (for obvious reasons!).  These are the types of wave functions that we will use when we are studying electron (and other quanta) scattering.  They correspond to the classical situation of a particle traveling from left to right (or right to left) at a constant speed.  We usually use equation 7 when we want to work with free quanta or with quanta scattering off of some potential.  You can think of the first term in the equation as representing a quanta moving to the right at a constant speed and the second term in the equation as representing a quanta moving to the left at a constant speed.  Notice that although the wave function conveys a sense of motion from left to right (or right to left) the probability density does not.  This may strike you as a bit odd, after all we can’t measure the wave function – we can only measure the probability density, so in what sense is this quanta actually moving?  This is one of the many initially confusing questions of quantum physics – be on the lookout for an answer in future in-gagements!

Since equation 5 is equivalent to equation 7, we can think of standing waves as a superposition of two traveling waves of equal amplitudes but going in opposite directions. (For example, recall that 
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).  You can verify this conclusion by setting C=±D=any number in WFE.  If we superimpose two traveling waves of unequal amplitudes going in opposite directions we get something that is not quite a standing wave or a traveling wave.  You will see this result in the next activity.

Activity 5:  Experiment with different values of C ≠ D ≠ 0 to see what kinds of different behaviors you can get.  For any one of these waves write down your values of C and D, press stop and sketch the wave function and probability density, then press run and describe the behavior of the wave function and probability density.  How are these wave functions (and probability densities) similar to and different from those that you studied in the previous activities?
Wave functions like these occur when a free quanta encounters a change in potential energy and is reflected back the way it came.  You will study this in more detail in later in-gagements.

Energy Dependence

The only main parameter in the wave function that we have not looked at yet is the energy.  If we leave V=0 and adjust E we will see what effects the energy has on the shape and behavior of the wave function.

Activity 6:  For simplicity, set C=1 and D=0 then use the total energy controls near the center of the left side of the screen to examine wave functions with a wide variety of energies.  Make sure you at least try several (positive) energy values from the range 0.1eV to 5.0eV.  (Note: the energy slider control, 
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 , has a logarithmic scale.  Clicking near the center will change the energy only by about 0.0000001eV.  You will need to click near the edges in order to change the energy substantially.)  Make sure the animation is running while you are doing this activity.  Also make sure you are look at the time behavior of the wave function while you are not changing the energy - i.e. pause between energy changes to study the time behavior at each energy level.  How does the wave function change as you increase the energy?  How does it change as you decrease the energy? 

Now we will look at how the energy affects standing wave functions.

Activity 7:  Change the equation type from Cexp(ikx)+Dexp(-ikx) to Asin(kx)+Bcos(kx).  Then use the total energy controls near the center of the left side of the screen to examine wave functions with a wide variety of energies.  Again, make sure you are look at the time behavior of the wave function while you are not changing the energy - i.e. pause between energy changes to study the time behavior at each energy level.  How does the wave function change as you increase the energy?  How does it change as you decrease the energy? 

Conclusion

As you are beginning to see, the solutions to the Schrödinger equation have quite a rich set to shapes and behaviors - even for a case as simple as a constant potential.  There are traveling wave solutions to correspond to the classical situation of a particle traveling with a constant speed, and other solutions that correspond to superpositions of two traveling waves and have no classical analogue.  For the different types of solutions we have different ways of writing the wave function - each equivalent to the others but more convenient to use in one situation or another.

The energy dependence of a traveling wave functions seems to somewhat correspond to the classical case - i.e. higher energies "move" faster.  But, the wavelength also depends on the energy and that doesn't really correspond to anything classical at all.  Furthermore, in some sense the quanta is not moving at all since the probability density doesn’t change with time.  You will see these theme again and again in quantum mechanics.  Sometimes we see clear classical analogues, sometimes the quantum behavior is nothing like any classical motion.
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